广东省自考信息网欢迎各位自考生,本站非政府官方网站,官方信息以广东省教育考试院(http://eea.gd.gov.cn)为准。

咨询热线:400-8077-735

自考办电话| 自考提问 | 公众号

搜索

城市: 广州 深圳 佛山 珠海 东莞 中山 惠州 肇庆 汕头 韶关 湛江 江门 茂名 梅州 汕尾 河源 阳江 清远 潮州 揭阳 云浮
自考专题: 广东省自考管理系统 广东自考成绩查询系统 准考证打印入口 广东自考视频解读 学历查询入口 微信公众号 考生交流群 在线咨询/解答 开考科目查询
您当前所在位置: 串讲笔记 > 经济类 > 2018年广东自学考试计量经济学知识点(5)

2018年广东自学考试计量经济学知识点(5)

日期:2018-10-07 22:51:38  编辑整理:广东自考信息网  【打印】  浏览(0

35、序列相关情形下参数的估计(1)一阶差分法:所谓差分就是考察变量的本期值与以前某期值之差,一阶差分就是变量的本期值与前一期值之差。(2)广义差分法。

36、多重共线性是指线性回归模型中的若干解释变量或全部解释变量的样本观测值之间具有某种线性的关系。其产生的原因:(1)经济变量之间往往存在同方向的变化趋势。(2)经济变量之间往往存在着密切的关联程度。(3)在模型中采用滞后变量也容易产生多重共线性。(4)在建模过程中由于解释变量选择不当,引起了变量之间的多重共线性。

37、多重共线性产生的后果:(1)各个解释变量对被解释变量的影响很难精确鉴别。(2)由于存在多重共线性时,模型回归系数估计量的方差会很大,这将使得进行显著性检验时认为回归系数的值与零无显著差异。(3)模型参数的估计量对删除或增添少量的观测值以及删除一个不显著的解释变量都可能非常敏感。

38、对多重共线性的检验

(1)简单相关系数检测法:两变量间的简单相关系数r是测定两变量之间线性相关程度的重要指标,因此可用来检验回归模型的解释变量之间的共线程度。

(2)方差膨胀因子检测法:所谓方差膨胀因子就是将存在多重共线性时回归系数估计量的方差与无多重共线时回归系数估计量的方差对比而得出的比值系数。如果某个解释变量与其他所有解释变量都不相关,则其方差膨胀因此为1;膨胀因子的值大于1,就意味着所考虑的解释变量与其他解释变量有一定程度的相关,即存在一定程度的多重共线性。经验认为,方差膨胀因子大于5,多重共线性的程度就很严重。

(3)判定系数增量贡献法:这是希尔(H.Theil)提出的一种方法,它是从解释变量与被解释变量的相关程度来检测多重共线性的。

39、对多重共线问题的处理:(1)追加样本信息;(2)使用非样本先验信息;(3)进行变量形式的转化;(4)使用有偏估计:包括岭回归估计和主成分回归估计。

40、由于许多经济变量都难以十分精确地测量,所以模型中包含有观测误差的解释变量是一种常见的情形。这种模型,通常称为误差变量模型。由于观测误差的随机性,所以这种模型是一种典型的含有随机解释变量的模型。

41、工具变量法:模型参数的最小二乘估计不具备一致的原因在于解释变量和随机误差项的相关。因此,若能找到一个解释变量,该变量与模型中的随机解释变量高度相关,但却不与随机误差项相关,那么就可用此变量和模型中的变量构造出模型相应回归系数的一个一致估计量。这个变量就称为是一个工具变量,这种估计方法就称为是工具变量法。对于时间序列资料,一种常用的工具变量是随机解释变量的滞后值或被解释变量的滞后值。对于截面数据资料,文献中常见的一种较简便的工具变量法是组平均法。

42、设定误差主要有以下几种:1.所设定的模型中遗漏了某个或某些与被解释变量有关的解释变量;2.所设定的模型中包括了若干与被解释变量无关的某个或某些解释变量;3.回归方程的模型形式设定有误。

43、质的因素通常表明某种“品质”或“属性”是否存在,所以将这类品质或属性量化的方法之一就是构造取值为“1”或“0”的人工变数。“1”表示这种属性存在,“0”则表示这种属性不存在。这种取值为1和0的变量称为虚拟变量,又可称为哑变量、二进制变量。


本文标签:广东自考经济类2018年广东自学考试计量经济学知识点(5)

转载请注明:文章转载自(http://www.gdzkw.net

本文地址:http://www.gdzkw.net/jjl/19189.html

热点关注:

广东自考成绩查询【小程序查分】图文流程方式

广东省2020年1月自考成绩于3月31日公布

《广东省自考信息网》免责声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。联系邮箱:812379481@qq.com。
立即获取备考方案

已帮助5w万+意向学历提升用户
成功上岸!